首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5826篇
  免费   512篇
  国内免费   159篇
  2023年   49篇
  2022年   40篇
  2021年   151篇
  2020年   168篇
  2019年   161篇
  2018年   138篇
  2017年   178篇
  2016年   175篇
  2015年   302篇
  2014年   330篇
  2013年   408篇
  2012年   350篇
  2011年   277篇
  2010年   224篇
  2009年   394篇
  2008年   382篇
  2007年   397篇
  2006年   341篇
  2005年   288篇
  2004年   272篇
  2003年   230篇
  2002年   181篇
  2001年   178篇
  2000年   157篇
  1999年   144篇
  1998年   129篇
  1997年   119篇
  1996年   74篇
  1995年   50篇
  1994年   53篇
  1993年   51篇
  1992年   30篇
  1991年   17篇
  1990年   13篇
  1989年   15篇
  1988年   7篇
  1987年   5篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1975年   1篇
排序方式: 共有6497条查询结果,搜索用时 78 毫秒
91.
For decades, genetic engineering approaches to produce unusual fatty acids (UFAs) in crops has reached a bottleneck, including reduced seed oil production and seed vigor. Currently, plant models in the field of research are primarily used to investigate defects in oil production and seedling development, while the role of UFAs in embryonic developmental defects remains unknown. In this study, we developed a transgenic Arabidopsis plant model, in which the embryo exhibits severely wrinkled appearance owing to α‐linolenic acid (ALA) accumulation. RNA‐sequencing analysis in the defective embryo suggested that brassinosteroid synthesis, FA synthesis and photosynthesis were inhibited, while FA degradation, endoplasmic reticulum stress and oxidative stress were activated. Lipidomics analysis showed that ultra‐accumulated ALA is released from phosphatidylcholine as a free FA in cells, inducing severe endoplasmic reticulum and oxidative stress. Furthermore, we identified that overexpression of lysophosphatidic acid acyltransferase 2 rescued the defective phenotype. In the rescue line, the pool capacity of the Kennedy pathway was increased, and the esterification of ALA indirectly to triacylglycerol was enhanced to avoid stress. This study provides a plant model that aids in understanding the molecular mechanism of embryonic developmental defects and generates strategies to produce higher levels of UFAs.  相似文献   
92.
In Arabidopsis thaliana the ANGUSTIFOLIA (AN) gene regulates the width of leaves by controlling the diffuse growth of leaf cells in the medio‐lateral direction. In the genome of the moss Physcomitrella patens, we found two normal ANs (PpAN1‐1 and 1‐2). Both PpAN1 genes complemented the A. thaliana an‐1 mutant phenotypes. An analysis of spatiotemporal promoter activity of each PpAN1 gene, using transgenic lines that contained each PpAN1‐promoter– uidA (GUS) gene, showed that both promoters are mainly active in the stems of haploid gametophores and in the middle to basal region of the young sporophyte that develops into the seta and foot. Analyses of the knockout lines for PpAN1‐1 and PpAN1‐2 genes suggested that these genes have partially redundant functions and regulate gametophore height by controlling diffuse cell growth in gametophore stems. In addition, the seta and foot were shorter and thicker in diploid sporophytes, suggesting that cell elongation was reduced in the longitudinal direction, whereas no defects were detected in tip‐growing protonemata. These results indicate that both PpAN1 genes in P. patens function in diffuse growth of the haploid and diploid generations but not in tip growth. To visualize microtubule distribution in gametophore cells of P. patens, transformed lines expressing P. patens α‐tubulin fused to sGFP were generated. Contrary to expectations, the orientation of microtubules in the tips of gametophores in the PpAN1‐1/1‐2 double‐knockout lines was unchanged. The relationships among diffuse cell growth, cortical microtubules and AN proteins are discussed.  相似文献   
93.
94.
95.
96.
97.
Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are crucial for the maintenance of genome integrity. In most plants, telomeres consist of conserved tandem repeat units comprising the TTTAGGG motif. Recently, non‐canonical telomeres were described in several plants and plant taxons, including the carnivorous plant Genlisea hispidula (TTCAGG/TTTCAGG), the genus Cestrum (Solanaceae; TTTTTTAGGG), and plants from the Asparagales order with either a vertebrate‐type telomere repeat TTAGGG or Allium genus‐specific CTCGGTTATGGG repeat. We analyzed epigenetic modifications of telomeric histones in plants with canonical and non‐canonical telomeres, and further in telomeric chromatin captured from leaves of Nicotiana benthamiana transiently transformed by telomere CRISPR‐dCas9‐eGFP, and of Arabidopsis thaliana stably transformed with TALE_telo C‐3×GFP. Two combinatorial patterns of telomeric histone modifications were identified: (i) an Arabidopsis‐like pattern (A. thaliana, G. hispidula, Genlisea nigrocaulis, Allium cepa, Narcissus pseudonarcissus, Petunia hybrida, Solanum tuberosum, Solanum lycopersicum) with telomeric histones decorated predominantly by H3K9me2; (ii) a tobacco‐like pattern (Nicotiana tabacum, N. benthamiana, C. elegans) with a strong H3K27me3 signal. Our data suggest that epigenetic modifications of plant telomere‐associated histones are related neither to the sequence of the telomere motif nor to the lengths of the telomeres. Nor the phylogenetic position of the species plays the role; representatives of the Solanaceae family are included in both groups. As both patterns of histone marks are compatible with fully functional telomeres in respective plants, we conclude that the described specific differences in histone marks are not critical for telomere functions.  相似文献   
98.
99.
Ubiquitination is a critical post‐translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T‐DNA insertion mutant in the At5g10650 locus. Compared to wild‐type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C‐terminal C3HC4‐type Really Interesting New Gene (RING) motif, which was essential for ABA‐mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule‐associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1‐ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA‐promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild‐type levels of H2O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2O2 and calcium in the ABA‐mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2O2, and calcium, which in turn resulted in ABA‐hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild‐type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA‐mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号